Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization

نویسندگان

  • Dejian Yang
  • Moses Kang
  • Eduard Muljadi
  • Wenzhong Gao
  • Junhee Hong
  • Jaeseok Choi
  • Yong Cheol Kang
چکیده

This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so that the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinated Control of Doubley Fed Induction Generator Virtual Inertia and Power System Oscillation Damping Using Fuzzy Logic

Doubly-fed induction generator (DFIG) based wind turbines with traditional maximum power point tracking (MPPT) control provide no inertia response under system frequency events. Recently, the DFIG wind turbines have been equipped with virtual inertia controller (VIC) for supporting power system frequency stability. However, the conventional VICs with fixed gain have negative effects on inter-ar...

متن کامل

DFIG Based Wind Turbines Behavior Improvement during Wind Variations using Fractional Order Control Systems

This paper is concerned with behavior analysis and improvement of wind turbines with Doubly Fed Induction Generator (DFIG) when using a new fractional-order control strategy during wind variations. A doubly fed induction generator, two types of variable frequency power electronic converters and two input wind waveforms are considered. A fractional-order control strategy is proposed for the wind...

متن کامل

Quantitative Control Approach for Wind Turbine Generators to Provide Fast Frequency Response with Guarantee of Rotor Security

Wind generation is expected to reach substantially higher levels of penetration in the near future. With the converter interface, the rotor inertia of doubly-fed induction generator (DFIG) based wind turbine generator is effectively decoupled from the system, causing a reduction in inertial response. This can be compensated by enabling the DFIG to provide fast frequency response. This paper pro...

متن کامل

Improvement Performances of Active and Reactive Power Control Applied to DFIG for Variable Speed Wind Turbine Using Sliding Mode Control and FOC

This paper deals with the Active and Reactive Power control of double-fed induction generator (DFIG) for variable speed wind turbine. For controlling separately the active and the reactive power generated by a DFIG, field oriented control (FOC) and indirect sliding mode control (ISMC) are presented. These non linear controls are compared on the basis of topology, cost, efficiency. The main cont...

متن کامل

Review on Wind Power Generation With Doubly Fed Induction Generator

This paper presents the review of the Doubly fed Induction Generator (DFIG) based Wind Energy Conversion System (WECS). Basically the various challenges of the grid connected DFIG based wind turbine has been highlighted in this review. Nonlinear model of wind turbine with DFIG configuration are explained and a 1.2 MW, 50 Hz, 6 pole DFIG simulated using MATLAB/SIMULINK. Some important control is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017